Best Nonspherical Symmetric Low Rank Approximation

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Best Nonspherical Symmetric Low Rank Approximation

Abstract. The symmetry preserving singular value decomposition (SPSVD) produces the best symmetric (low rank) approximation to a set of data. These symmetric approximations are characterized via an invariance under the action of a symmetry group on the set of data. The symmetry groups of interest consist of all the non-spherical symmetry groups in three dimensions. This set includes the rotatio...

متن کامل

Jacobi Algorithm for the Best Low Multilinear Rank Approximation of Symmetric Tensors

The problem discussed in this paper is the symmetric best low multilinear rank approximation of third-order symmetric tensors. We propose an algorithm based on Jacobi rotations, for which symmetry is preserved at each iteration. Two numerical examples are provided indicating the need of such algorithms. An important part of the paper consists of proving that our algorithm converges to stationar...

متن کامل

Best Symmetric Low Rank Approximation via the Symmetry Preserving Singular Value Decomposition

The symmetry preserving singular value decomposition (SPSVD) produces the best symmetric (low rank) approximation to a set of data. These symmetric approximations are characterized via an invariance under the action of a symmetry group on the set of data. The symmetry groups of interest consist of all the non-spherical symmetry groups in three dimensions. This set includes the rotational, refle...

متن کامل

Low-rank Tensor Approximation

Approximating a tensor by another of lower rank is in general an ill posed problem. Yet, this kind of approximation is mandatory in the presence of measurement errors or noise. We show how tools recently developed in compressed sensing can be used to solve this problem. More precisely, a minimal angle between the columns of loading matrices allows to restore both existence and uniqueness of the...

متن کامل

Structured Low Rank Approximation

Abstract. This paper concerns the construction of a structured low rank matrix that is nearest to a given matrix. The notion of structured low rank approximation arises in various applications, ranging from signal enhancement to protein folding to computer algebra, where the empirical data collected in a matrix do not maintain either the specified structure or the desirable rank as is expected ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SIAM Journal on Matrix Analysis and Applications

سال: 2010

ISSN: 0895-4798,1095-7162

DOI: 10.1137/080732808