Best Nonspherical Symmetric Low Rank Approximation
نویسندگان
چکیده
منابع مشابه
Best Nonspherical Symmetric Low Rank Approximation
Abstract. The symmetry preserving singular value decomposition (SPSVD) produces the best symmetric (low rank) approximation to a set of data. These symmetric approximations are characterized via an invariance under the action of a symmetry group on the set of data. The symmetry groups of interest consist of all the non-spherical symmetry groups in three dimensions. This set includes the rotatio...
متن کاملJacobi Algorithm for the Best Low Multilinear Rank Approximation of Symmetric Tensors
The problem discussed in this paper is the symmetric best low multilinear rank approximation of third-order symmetric tensors. We propose an algorithm based on Jacobi rotations, for which symmetry is preserved at each iteration. Two numerical examples are provided indicating the need of such algorithms. An important part of the paper consists of proving that our algorithm converges to stationar...
متن کاملBest Symmetric Low Rank Approximation via the Symmetry Preserving Singular Value Decomposition
The symmetry preserving singular value decomposition (SPSVD) produces the best symmetric (low rank) approximation to a set of data. These symmetric approximations are characterized via an invariance under the action of a symmetry group on the set of data. The symmetry groups of interest consist of all the non-spherical symmetry groups in three dimensions. This set includes the rotational, refle...
متن کاملLow-rank Tensor Approximation
Approximating a tensor by another of lower rank is in general an ill posed problem. Yet, this kind of approximation is mandatory in the presence of measurement errors or noise. We show how tools recently developed in compressed sensing can be used to solve this problem. More precisely, a minimal angle between the columns of loading matrices allows to restore both existence and uniqueness of the...
متن کاملStructured Low Rank Approximation
Abstract. This paper concerns the construction of a structured low rank matrix that is nearest to a given matrix. The notion of structured low rank approximation arises in various applications, ranging from signal enhancement to protein folding to computer algebra, where the empirical data collected in a matrix do not maintain either the specified structure or the desirable rank as is expected ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SIAM Journal on Matrix Analysis and Applications
سال: 2010
ISSN: 0895-4798,1095-7162
DOI: 10.1137/080732808